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Abstract—Today’s cloud storage infrastructures typically pro-
vide two distinct types of services for hosting files: object storage
like Amazon S3 and filesystem storage like Amazon EFS. The
former supports simple, flat object operations with a low unit
storage price, while the latter supports complex, hierarchical
filesystem operations with a high unit storage price. In practice,
however, a cloud storage user often desires the advantages of
both—efficient filesystem operations with a low unit storage price.
An intuitive approach to achieving this goal is to combine the
two types of services, e.g., by hosting large files in S3 and small
files together with directory structures in EFS. Unfortunately,
our benchmark experiments indicate that the clients’ download
performance for large files becomes a severe system bottleneck.

In this paper, we attempt to address the bottleneck with
little overhead by carefully tweaking the usages of S3 and EFS.
This attempt is enabled by two key observations. First, since S3
and EFS have the same unit network-traffic price and the data
transfer between S3 and EFS is free of charge, we can employ
EFS as a relay for the clients’ quickly downloading large files.
Second, noticing that significant similarity exists between the files
hosted at the cloud and its users, in most times we can convert
large-size file downloads into small-size file synchronizations
(through delta encoding and data compression). Guided by the
observations, we design and implement an open-source system
called HyCloud. It automatically invokes the data APIs of S3 and
EFS on behalf of users, and handles the data transfer among S3,
EFS and the clients. Real-world evaluations demonstrate that
the unit storage price of HyCloud is close to that of S3, and the
filesystem operations are executed as quickly as in EFS in most
times (sometimes even more quickly than in EFS).

I. INTRODUCTION

Recent years have witnessed phenomenal successes of cloud
storage in hosting data with the economies of scale. Specif-
ically, today’s cloud storage infrastructures have provided a
spectrum of services exemplified by Amazon S3 (Simple
Storage Service), EBS (Elastic Block Storage), EFS (Elastic
File System), Glacier (Archive Storage), and so forth. As the
most basic data-organization form and the most user-friendly
information carrier, files are typically hosted by two types of
cloud storage services with distinct design principles at the
moment: object storage (e.g., Amazon S3, OpenStack Swift
and Aliyun OSS [1]) and filesystem storage (e.g., Amazon
EFS, Azure File Storage and Aliyun NAS [2]).

Object storage services have experienced the highest growth
amongst the spectrum of cloud storage services, due to their
simple, flat data interfaces (like PUT, GET and DELETE an

object/file) and the extremely low unit storage price (e.g.,
∼$0.02/GB/month in S3). As a result, they have been widely
used by various popular applications (e.g., Dropbox, Netflix,
and Airbnb). On the other hand, the simple, flat data interfaces
also become a weakness when the upper-layer applications
wish to support POSIX-like [3] file and directory operations
(e.g., MKDIR, RMDIR, MOVE, COPY and LIST). Conse-
quently, the concerned applications (e.g., Dropbox) have to
maintain a separate index cloud, which incurs considerably
additional costs and complexities.

More recently, filesystem storage services, an alternative
type of cloud storage services, were provided to natively sup-
port complex, hierarchical filesystem operations, particularly
those operations involving directory structures. Third parties
can thus directly build upper-layer applications wishing to
support POSIX-like operations on top of this type of services.
Nevertheless, such services are found to have a much higher
unit storage price than object storage services. For example,
the unit storage price of Amazon EFS (∼$0.3/GB/month) is
over 10× higher than that of Amazon S3.

In practice, a cloud storage user is often concerned with
price and efficiency, and desires the advantages of both cloud
storage services, i.e., efficient filesystem operations with a low
unit storage price. An intuitive approach to achieving this goal
is to combine the two types of services. For example, we
can host large files in S3 to achieve low storage costs, and
meanwhile host small files and the metadata of all files (mainly
directory structures) in EFS to achieve efficient filesystem
operations. Additionally, by maintaining “link files” in EFS
that refer to the large files in S3, we can easily handle those
directory-related operations such as MOVE, LIST and COPY.

To examine the practical performance of the intuitive ap-
proach, we made a real-world deployment using S3, EFS,
and EC2 (note that the EFS service should be accessed
through an EC2 VM instance to which the EFS filesystem is
mounted [4]). Our benchmark experiments show that storing
and accessing small files (of several KBs to several MBs)
substantially benefit from the stably high performance of EFS.
Unfortunately, the clients’ download performance for large
files (of course from S3) often becomes a severe system
bottleneck. For instance, a client with a 100-MBps Internet
access bandwidth can spend up to 16 minutes in downloading
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Fig. 1. Architectural overview of HyCloud, and a typical process for a client
to download a large file from the hybrid cloud storage services.

a 100-MB file (hence the download speed is merely 0.1
MBps). In essence, the highly unstable performance of S3
stems from its relatively simple implementation, which cannot
effectively tackle possible transfer congestions incurred by
numerous concurrent data requests [5], [6]; in contrast, the
mature load balance support of EFS can well cope with bursty
data requests [4]. Still worse, the download bottleneck would
also hold off relevant filesystem operations (e.g., COPY) and
thus essentially undermine the user experiences.

In this paper, we attempt to address the bottleneck with
little overhead by carefully tweaking the usages of S3 and
EFS to improve interoperability. This attempt is enabled by
our two key observations. First, since S3 and EFS have
the same unit network-traffic price for clients (∼$0.05/GB
for outbound traffic and free for inbound traffic) and the
data transfer between S3 and EFS within the same AWS
(Amazon Web Serivces) region is not only rapid but also
free of charge, we can always employ EFS as a relay for
the clients’ quickly downloading large files. Second, noticing
that significant similarity exists between the files hosted at the
cloud and its users [7], [8], [9], in most times we can convert
large-size file downloads into small-size file synchronizations
(through delta encoding and data compression).

Guided by the observations, we design and implement a
system called HyCloud. As demonstrated in Fig. 1, HyCloud
utilizes a centralized controller to receive all clients’ filesystem
operation requests, and automatically invokes the data APIs
of S3 and EFS to execute the filesystem operations on behalf
of the users. In order to accelerate the clients’ downloading
large files, HyCloud leverages EFS to forward the file content
from S3 to the clients (EC2 VM instances further work as
relay proxies between EFS and the clients given that they are
necessary for executing POSIX-like filesystem operations on
EFS). Moreover, whenever a user requests to download a large
file (say f ) from the hybrid cloud storage services, the client
first checks whether there is already an old version of the
file (say f ′) locally stored. If yes, the client will interact with
an assigned relay proxy to calculate the differences between
f and f ′ (the so-called “delta encoding”); afterwards, the
relatively small-size differences are returned to the client in
their compressed form for generating f . In addition, we devise
filesystem operation control mechanisms to balance operation

execution timeliness and system overhead, as well as eliminate
redundant filesystem operation requests.

With all the above efforts, HyCloud achieves cost-
efficient filesystem hosting atop S3 and EFS in a scal-
able manner. All the source code is publicly available
at https://github.com/iHyCloud/hycloud-demo. Comprehensive
real-world evaluations demonstrate the efficacy of our design.
Under typical workloads, the overall unit storage price is
quite close to that of S3 (with only a 0.43% increase). The
filesystem operations are executed as quickly as in EFS in
most times. For example, downloading a 100-MB file with
HyCloud takes at most 15 seconds, approximately 5× faster
than that of S3 (when the client-side access bandwidth is not
a bottleneck). When there is already an old-version file locally
stored, downloading a 100-MB file costs less than 8 seconds,
even exceeding the performance of EFS.

In summary, this paper makes the following contributions:
• A combinatory use of two major, heterogeneous types

of cloud storage services (Amazon S3 and EFS) is
implemented for whole filesystem hosting, and opportu-
nities to address its performance bottleneck of large-file
downloads are observed (§II).

• Based on the observations, several enabling mechanisms
are designed to carefully tweak the usages of S3 and EFS,
including relay-based downloading, adaptively-adjusted
delta encoding, and filesystem operation control (§III).

• An open-source cost-efficient filesystem hosting system
called HyCloud is finally implemented to embody the
above enabling mechanisms. Extensive real-world evalu-
ations demonstrate its high efficiency and low cost (§IV).

II. MOTIVATION

To fulfill cloud storage users’ desires for both low unit
storage price and high filesystem operation efficiency, this
section presents our first endeavor towards a hybrid archi-
tecture that makes a combinatory use of object storage and
filesystem storage services in an intuitive manner. We describe
the design and implementation of the intuitive approach on
top of Amazon S3 and EFS (§II-A), followed by real-world
measurements of filesystem hosting performance with various
benchmark experiments (§II-B).

A. The Intuitive Approach

As the representatives of two distinct types of cloud stor-
age services, Amazon S3 and EFS have highly heteroge-
neous pricing models for hosting files, briefly quantified in
Table I. Most notably, despite the pricing disparities due
to the usage amount and region, the unit storage price of
Amazon EFS (∼$0.3/GB/month) is over 10 times higher
than (on average nearly 15 times as) that of Amazon S3
(∼$0.02/GB/month) [10], [11], [12]. On the other hand, S3
and EFS have the same unit network-traffic price for clients1,
and the data transfer between them (in the same region) is

1It is necessary for clients to access EFS through EC2 VM instances, and
thus the corresponding network-traffic price and request price in Table I are
actually those of EC2 (as accessing EFS from EC2 is free of charge [11]).
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TABLE I
PRICING MODELS OF AMAZON S3 AND EFS

Cloud Storage Network Traffic Requests ($)
Service ($/GB/Month) (Outbound, $/GB)

Amazon S3 0.021 ∼ 0.023
0.05 ∼ 0.09 PUT 5× 10−6

(Inbound free) GET 4× 10−7

EFS via EC2 0.3 ∼ 0.36
0.05 ∼ 0.09

Free
(Inbound free)

free of charge [11], [12]. Also, we find that for a large file,
the request price is almost negligible compared to the storage
and network transfer price.

The above three findings directly motivate us to the intuitive
approach that hosts large files in S3 to achieve an overall
low unit storage price. In contrast, small files as well as
directory structures are hosted in EFS to take advantage of
the efficiency of EFS, given that small files have little impact
on the overall unit storage price and directory structures are
frequently accessed and updated. On this basis, we embody
the intuitive approach into a real-world system as depicted in
Fig. 2. In the cloud, a namespace path is allocated to each
user, in which a small file is directly stored in the same path
as in the user’s client-side filesystem. For a large file stored
in S3 (as an object), a link file with the same file name plus
a special extension is maintained in the corresponding path of
the EFS filesystem. The link file includes a series of metadata,
particularly a hash index calculated based on the file content
and used as the name of the corresponding S3 object.

With such implementation, all those directory-related
filesystem operations (e.g., MKDIR, RMDIR, LIST, MOVE,
COPY and DELETE) can be easily handled with the EFS
filesystem. For example, we can directly read some metadata
of large files from their link files when listing files is requested.
Likewise, we just need to move or copy the corresponding link
file to another path for an operation to a file stored in S3. In
detail, a required filesystem operation is first encapsulated in
an HTTP POST/GET/PUT/DELETE request by the client, and
then sent to the controller working on an EC2 VM instance.
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Fig. 3. Operation latencies of EFS on common directory-related opera-
tions.

On receiving the HTTP request, the controller first extracts
the required filesystem operation, and then executes it in EFS
using the NFS (Network File System) protocol [4].

To save storage space for redundant large files, we make
multiple link files (linking to the same content) located in
different paths refer to a single object in S3. At the same time,
a global link number is marked in the object’s name to easily
count such link files (hence, the link number does not need
to be maintained in each link file). Accordingly, we rename
the object by increasing the link number for a file copy, and
decreasing the link number for a file deletion.

B. Measurements and Key Observations

Although the above described intuitive approach appears
to have offered a moderate balance between the working
efficiency and monetary cost for filesystem hosting, its real-
world performance has to be carefully examined to meet
the requirements of practical usages. Besides, we need a
quantitative understanding on some key system parameters,
e.g., the threshold between small and large files. Thus, we
conduct measurements on a real-world deployment concerning
the basic performance of S3 and EFS.

Specifically, by using S3, EFS and EC2 services all located
in the AWS Oregon region (where all the services have the
lowest price), we first measure the upload and download
latencies of S3 through S3 data API requests (PUT and GET),
and then measure the operation latencies of EFS through
various HTTP requests (LIST, COPY, MOVE, DELETE, etc.).
To comprehensively evaluate the performance, each kind of
requests are issued for files in 6 typical sizes exponentially
increasing from 1 KB to 100 MB, from three geo-distributed
DigitalOcean [13] VM nodes located at Singapore, Toronto
and London. Each of the DigitalOcean clients possesses a 100-
MBps Internet connection (so that the client-side bandwidth
would not become a bottleneck). To grasp the stability of the
performance, each experiment is executed for 100 times over
a whole week.
Pros and Cons. As depicted in Fig. 3, all common directory-
related operations can be quickly executed in 0.44 seconds.
If the network-level round trip time is excluded, a single
directory operation can be finished in 0.1 seconds. Next, the



1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

10
0

10
1

L
a

te
n

c
y

 (
s

)

File size

 

 

S3−Upload

EFS−Upload

S3−Download

EFS−Download

Fig. 4. Average upload/download latencies for files in different sizes to/from
S3 and EFS.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Download latency (s)

C
D

F
 o

f 
la

te
n

c
y

 

 

S3−10M

EFS−10M

S3−100M

EFS−100M
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S3 and EFS.

measurement results of average upload/download latencies (in
log-log scale) for files are shown in Fig. 4. By comparing the
upload latencies of S3 and EFS, we find that EFS outperforms
S3 for small files while its performance falls behind S3 for
relatively large files. Quantitatively, the file-size threshold
between small and large files can be roughly taken as 1 MB
or several MBs according to the intersection point (marked
in Fig. 4) of the “S3-Upload” and “EFS-Upload” curves.
These findings confirm the efficacy of the intuitive approach
in handling both directory operations and file uploads.

On the other hand, Fig. 4 indicates that EFS substantially
outperforms S3 in terms of download latency for the files of
all sizes. For instance, a client needs an average of 10 seconds
to download a 100-MB file from EFS, but nearly 50 seconds
from S3. Still worse, we notice that the performance variance
(or says the instability) of S3 is much larger than that of EFS,
thus further aggravating the inferiority of S3 in handling file
downloads. To quantify this, we plot in Fig. 5 the CDF of
download latencies for 10-MB and 100-MB files. Obviously,
S3 exhibits a much higher tail latency than EFS—a client can
spend up to 16 minutes in downloading a 100-MB file (hence
the download speed is as low as 0.1 MBps).

On the whole, while the attractive pricing makes S3 quite
suitable for large-file storage, the implementation defect (i.e.,
no mature load balance mechanism to tackle bursty data
requests) largely impairs its performance for large-file delivery.
If we adopt the intuitive approach for filesystem hosting, the
download performance of large files (of course from S3) will
become a severe system bottleneck. In addition, a long-lasting
download process may influence the execution efficiency of
other filesystem operations. For example, the COPY operation
(on a large file f ) would be held off while f is being
downloaded. This is because in the intuitive approach, the
COPY operation need increase the link number of f and thus
the name of f is changed accordingly. Hence, the system has to
wait until f is totally downloaded to start the COPY operation.

Opportunities. During our experiments, we also notice some
opportunities to potentially address the system bottleneck un-
ravelled above. First, we notice that the data transfer between
S3 and EFS is quite rapid. For instance, when we transfer a

100-MB file between S3 and EFS in the same AWS region
(with the help of EC2) for 100 times, the average transfer
latencies in both directions are quite short: ∼4.5 seconds for
S3→EFS and ∼2.5 seconds for EFS→S3. It is also worth
mentioning that the data transfer between S3 and EFS in the
same AWS region is free of charge [11], [12]. Besides, EFS
has the same unit network-traffic price with S3, as listed in
Table I. Given these three factors, we can always employ EFS
as a relay for the clients’ quickly downloading large files.

In addition, we notice that significant similarity exists be-
tween the files hosted at the cloud and its users. A comprehen-
sive, real-world dataset of cloud storage usages [7] indicates
that the majority (84%) of files hosted by cloud storage
services are modified by users for at least once; moreover,
over half (52%) of files can be effectively compressed. Thus,
adopting data sync techniques such as delta encoding and data
compression is expected to reduce the WAN traffic (between
the cloud and its users) to a large extent, e.g., 76% saving
between adjacent versions of Emacs source codes [8], and 26%
saving among the network traffic from 11 enterprise sites [9].
Unfortunately, the data APIs of S3 do not support any of
these data sync techniques. As a result, whenever possible,
we can convert the full-content download of a large file into
the transmission of fine-grained sync data (in a relatively small
size) with some effective data sync techniques.

III. HYCLOUD DESIGN

Guided by the above two key observations, we design
a cost-efficient filesystem hosting service named HyCloud
by carefully tweaking the usages of S3 and EFS. In this
section, we first describe the system framework, followed by
an advanced file transfer scheme for boosting the file transfer
speed, especially the large-file download speed. After that,
we present filesystem operation control mechanisms which
balance operation execution timeliness and system overhead.

A. System Framework

HyCloud fulfills all common filesystem operations based
on the interactions among Client, Controller and Relay Proxy,
as demonstrated in detail in Fig. 6. The functionality of each
building component is outlined as follows.
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Client: HyCloud adopts a lightweight client-side implemen-
tation. On behalf of a registered user, User Interface keeps
sending filesystem operation requests to the controller. In
particular, for a file upload request Transfer Agent helps upload
the file content to either S3 or EFS according to the file size.
Besides, it is also responsible for downloading files hosted at
the cloud by interacting with the relay proxies and managing
the corresponding metadata.

Controller: As the command center of HyCloud, the con-
troller handles filesystem operation requests from all user
clients with Operation Handler, which assigns relay proxies
according to their available bandwidths. Object Interface and
Filesystem Manager are two cloud interfaces to S3 and EFS
respectively, handling data transfer between S3 and EFS as
well as maintaining link files in EFS. Moreover, Userinfo
Storage is a small database that stores infomation of all
registered users.

Relay Proxy: Filesystem Interface on each relay proxy inter-
acts with EFS to forward large files from S3. Data Optimizer
further conducts delta encoding and data compression on the
file when there is an old-version file locally stored. In addition,
Measurement Agent periodically measures link bandwidths
from connected clients and feeds back the available bandwidth
to the controller, and Transfer Engine forwards files to the
clients finally.

B. Advanced File Transfer Scheme

Aimed at the goal of cost-efficient filesystem hosting, we
have proposed an intuitive approach that hosts large files in
S3 and small files together with directory structures in EFS.
With the elaborate design of hybrid storage and directory-
based maintenance, it proves to be cost-efficient for most
filesystem operations. Therefore, HyCloud inherits the basic
storage structure as well as all directory-related filesystem
operations (e.g., LIST, MOVE, COPY). On this basis, we
design an advanced file transfer scheme to address the large-
file download bottleneck of the intuitive approach.

Relay-Based Downloading. According to our first key
observation, in addition to storing small files, HyCloud also
adopts EFS as a relay to accelerate the download of large files

in S3. Specifically, when a user requests HyCloud service to
download a large file, the file is firstly transferred from S3 to
EFS by the controller invoking their data APIs. Thereafter, an
assigned relay proxy (on an EC2 VM instance to which EFS
is mounted) forwards the file content to the client. Note that
such a file should not be stored in the corresponding filesystem
path in EFS (where its link file is), or it will inevitably
influence other directory-related filesystem operations (e.g.,
LIST, MOVE, COPY) to the path. Instead, all these files
are temporarily stored in a special caching path. To make
relay proxies easily forward them, they can be named by their
original full paths in which the separators are replaced with
a special character (e.g., “#”). Given the high performance
of both transfer periods (shown in §II-B), this mechanism is
supposed to largely relieve the download bottleneck.
Adaptively-Adjusted Delta Encoding. In practice, for a
large proportion of files, there exists significant similarity
between the versions hosted at the cloud and its users (just
as our second key observation illustrates). To further improve
transfer efficiency, HyCloud conducts delta encoding for large-
file download when there is already an old-version file stored
locally. Concretely, to download a file f in S3, a checksum
list of the local old-version file f ′ is generated by the client
firstly. Once the file f is acquired from S3 or has been cached
in EFS, the assigned relay proxy calculates the differences
(i.e., a delta file) between two file versions based on the
uploaded checksum list. According to a large number of
tests, we observe that most delta files have an over 10 times
compression ratio (= file size before compression / file size
after compression) and the computation is also quite rapid.
Thus an effective compression algorithm (e.g., gzip, bzip2)
can be further adopted to reduce the overall download time.
After the compressed delta file is returned to the client, it is
decompressed and finally applied on the old-version file f ′ to
generate the requested file f .

It is worth noting that the delta size ∆ is determined by
both file attributes (size, type, and modification scale) and
the rolling chunk size. It is impossible to obtain an optimal
chunk size for a file unless the file is actually transferred.
Here we try to predict the best value based on the observation
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that the optimal chunk size is highly consistent among file
versions, and design an adaptively-adjusted delta encoding
mechanism. Specifically, we pick a small collection of typical
chunk sizes ~c in advance, from hundreds of bytes to tens of
kilobytes. For a file of size Sf , we define elimination ratio
γ = 1 − ∆/Sf . Every time a client finishes downloading
a large file, it conducts delta encoding on the file locally
with each chunk size ci to get elimination ratio γi. Note
that the process can be done in background when there is
enough CPU resource. Next the local chunk-size selection
probability vector are defined as the normalized elimination
ratios ~Ploc = {γi/

∑
i γi}. The correlation between newly

predicted selection probability vector ~Pnew and previously
recorded selection probability vector ~Ppre is

~Pnew = ~Ppre ∗ λ+ ~Ploc ∗ (1− λ), (1)

where λ is a decay factor and is typically set as n/(n + 1)
for the n-th adjustment. The chunk size corresponding to
the highest probability in ~Pnew (recorded as the new file’s
metadata) will be adopted next time.

File Migration in Background. It is also worth mentioning
that some files are small initially but their sizes grow beyond
the file-size threshold S̄f due to a series of modification
operations. If such files are migrated to S3 in time, we can
not only save total storage cost (given the per size and time
unit pricing model shown in Table I), but also improve transfer
efficiency (as the designed delta encoding mechanism could
be adopted then)2. Accordingly, a message is added into a
queue named Migration Queue every time the size of a file
uploaded to EFS exceeds the size threshold. A background
thread is in charge of monitoring the queue, and conducts the
real file migration offline when there are enough CPU and
network resources and no delta application in progress. After
the file is successfully migrated to S3, a link file with all the
aforementioned metadata is built to replace it in EFS. Note
that the above process should be an atomic operation, i.e.,
any request of accessing the file cannot be responded until
the two steps are both finished. Similar to handling redundant
large files in §II-A, we can avoid the real migration to further

2As file size decrease happens at a very low frequency and amount for
most users, file migration from S3 to EFS can hardly bring benefits, and thus
it is not considered in our design.

reduce the transfer overhead, if there has been an object with
the same hash index (object name) in S3.

C. Filesystem Operation Control Mechanisms

In practice, a filesystem operation is expected to be com-
pleted as soon as it is requested by a user. However, massive
workloads induced by a large scale of filesystem operation
requests (especially those cannot be well optimized with the
above transfer scheme) may bring heavy overhead to HyCloud
proxies. Therefore, we next design filesystem operation control
mechanisms in both the controller and the client, to guarantee
well acceptable user experience while reducing the system
overhead. Fig. 7 depicts the whole filesystem operation control
process of HyCloud.

Operation Request Handling. When operation requests
arrive at Request Queue of the controller, they are added
to a priority-based message queue named Request Queue.
Each filesystem operation request includes file metadata like
operation type and arrival timestamp. As the directory-related
operations do not involve data transfer, HyCloud sets a higher
priority for them, which will be handled before file transfer
operations. Among operations of the same type, FCFS (First
Come First Served) is adopted. Particularly, operations to one
file (e.g., download and then delete) should be executed based
on the request order to avoid potential logic errors. Meanwhile,
the available transfer bandwidth in each relay proxy is mea-
sured by a monitor thread in background, and periodically fed
back to the controller. On this basis, the controller assigns relay
proxies with top transfer bandwidth to tackle file operations
by sending notifications to their Notification Queues.

Redundant Operation Elimination. To further boost the
efficiency of filesystem operation executions, additional con-
trol mechanisms are adopted in the HyCloud client. Firstly, it
is manifest that too many frequent operation requests from a
large number of users can severely influence the performance
of controller. Therefore, whenever the controller feeds back
its performance reduction or a client itself encounters network
bandwidth bottleneck, we cache filesystem operation requests
in Local Operation Queue, and then send them to the controller
as soon as there is no bottleneck. Moreover, during the caching
interval, some redundant requests can be eliminated locally.
For instance, a file upload request is removed once a deletion



or another upload operation to the same file appears subse-
quently. Through the above mechanisms, we can guarantee
the system scalability as well as reduce the real filesystem
operation workloads to a large extent.

IV. PERFORMANCE EVALUATION

In this section, we first briefly present the implementation
of HyCloud prototype. On the basis of real-world deployment,
we conduct measurements on the effectiveness of the designed
file transfer scheme in different scenarios with a variety of
typical workloads. Finally, we evaluate the system’s storage
cost-effectiveness with a large-scale data trace.

A. HyCloud Prototype

We have implemented a prototype of HyCloud framework
in approximately 3500 lines of codes for all three platforms
(client, controller and relay proxy). The prototype can pro-
vide a cost-efficient filesystem hosting service atop S3 and
EFS in a scalable manner. The source code is available at
https://github.com/iHyCloud/hycloud-demo.

Particularly, we implement rsync [14]-like delta encoding
without invoking rsync libraries, thus conveniently adding
transfer optimization mechanisms while avoiding extra over-
head. Meanwhile, a moderate amount (typically 1 GB) of
EFS storage capacity is used to cache the forwarded files,
which are recycled periodically in idle time following LRU
(Least Recently Used) caching scheme. Both the controller
and relay proxies interact with S3 and EFS by invoking their
data APIs respectively. When a number of operation requests
arrive simultaneously, HyCloud will start multiple threads to
accelerate API upload or download correspondingly under the
designed transfer scheme. In addition, the bandwidth feedback
as well as workload dispatch rely on the interaction between
the controller and a relay proxy with Apache MINA [15].

B. Experiment Setup

We adopt both S3 and EFS in the AWS Oregon region
for all the experiments, because the region is overall the best
among all AWS regions on the aspects of both performance
and cost. Based on our first key observation, we deploy the
controller and three relay proxies on Amazon EC2 t2.micro
instances (the configuration is low and cheap) in the same
region, where EFS is able to be directly mounted and S3 can
be also efficiently accessed. According to the requirement of
experiments, we adopt DigitalOcean VM node in Singapore,
Toronto and London (the same as in §II-B) as HyCloud
clients with the lowest configuration but unlimited network
bandwidth, which can well simulate user PC performance and
avoid local network congestion. As the comprehensive cost
and performance efficacy of the intuitive approach is proven
to be better than only storing files in S3 or EFS in §II-B, next
we evaluate it as a baseline for performance comparison.

In addition, to calculate a convincing overall unit storage
price of HyCloud, we utilize a large-scale data trace of
Xuanfeng [16] cloud service. This trace was collected from
742,064 users with 3,412,827 files over a week. Specifically,

we select the records on Feburary 22, 2015 for storage cost
comparison (with S3 and EFS), which has totally 514,095 files
ranging from 5 KB to approximately 4 GB.

C. Effectiveness of Advanced File Transfer Scheme

Relay-based downloading is a basic mechanism that Hy-
Cloud adopts to tackle the large-file download bottleneck. We
first evaluate it on a number of typical large files (the size
ranges from 10 MB to 100 MB). The overall download time
of each size is shown in Fig. 8. We also show the performance
of the intuitive approach (directly downloading the large
files from S3) for contrast. As the figure illustrates, the file
download in all sizes experience performance promotion, with
time reduction up to 83.9% and 64.5% on average. Especially,
downloading a 100-MB file only takes at most 15 seconds with
HyCloud, which indicates the effectiveness of the relay-based
downloading mechanism.

In addition, HyCloud adopts adaptively-adjusted delta en-
coding in the relay-based download process for files with old
versions locally stored. Accordingly, we conduct evaluation on
download time of source codes, which are updated frequently
in general. Specifically, four common source code tar files in
different sizes are adopted (Redis ∼7 MB, Tomcat ∼25 MB,
FFmpeg ∼58 MB, Hadoop ∼100 MB). We download 10 latest
versions of codes sequentially based the adaptively-adjusted
delta encoding mechanism in HyCloud. Fig. 9 describes the
transfer time of each multi-version code file, in which the
intuitive approach (downloading the source codes from S3)
also serves as a comparison. HyCloud can bring quite large
efficiency promotion, reducing the download time up to 81.9%
(67.3% on average). It is also worth mentioning that the
average download time of 100-MB Hadoop code files is less
than 8 seconds, even exceeding the performance of EFS (∼10
seconds for the 100-MB file download as shown in Fig. 4).

We further evaluate the effectiveness of adaptively-adjusted
delta encoding mechanism by measuring the network traffic
incurred among the above 10 different versions of FFmpeg
code files. Note that the overall data transfer latency is
positively related to network traffic, as computation time of
delta sync varies little with different chunk sizes. The metric
transfer traffic ratio is defined as the ratio of the transfer traffic
with a chunk size to the theoretically optimal one. Fig. 10
shows the traffic ratio of HyCloud in contrast with that of
several typical chunk sizes. We observe that the transfer traffic
of HyCloud converges to the optimal curve much faster than all
fixed chunk sizes, and its steadiness among different versions
also shows robustness of the mechanism. As the computation
is mainly conducted in the idle time, the mechanism brings
little overhead in practice.

D. Storage Cost-Effectiveness of HyCloud Service

In addition to the above experiments on the main trans-
fer optimization mechanisms, we also evaluate two overall
indicators of HyCloud service—storage cost and scalability.
Before that, we first determine the file-size threshold S̄f for
HyCloud filesystem hosting by testing a small collection of
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Fig. 8. Download time reduction with the relay-based mechanism for large
files in different sizes.
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Fig. 9. Download time reduction for different versions of four common
source codes.
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Fig. 11. Impact of file size threshold on the overall upload and download
time of a number of files.

TABLE II
STORAGE COSTS OF CLOUD SERVICES UNDER TYPICAL WORKLOADS

Cloud File Data Cost Metadata Cost Unit Storage Price
Service ($/Month) ($/Month) ($/GB/Month)

Amazon S3 11712.496 0.154 0.02278

Amazon EFS 167321.366 0 0.3

HyCloud 11717.66 0.144 0.02279

typical file sizes (512 KB∼8 MB) around the rough threshold
(1 MB) for the intuitive approach (in §II-B). Specifically,
we generate 100 files in different sizes which are randomly
selected from the data trace (file sizes over 1GB are filtered
out), and then evaluate their overall transfer performance by
uploading and downloading them to/from S3 or EFS according
to each threshold. As the results depicted in Fig. 11, we can
set the file-size threshold as 2 MB for HyCloud service due
to its overall best performance.

On this basis, we evaluate the storage cost of HyCloud
through overall unit storage price comparison. For files in
the selected one-day data trace, the costs ($) of storing their
file data and metadata in the three cloud services are shown
in Table II. According to the latest prices of S3 and EFS,
the overall unit storage price (including metadata storage) of
HyCloud is ∼$0.02279/GB/month for the selected typical file
workloads, which is much cheaper than that of EFS and quite

close to that of S3 (the increase is only 0.43% if S3 metadata
is similarly stored in EFS). The evaluation well shows the
cost-effectiveness of HyCloud as a filesystem hosting service.

V. RELATED WORK

There has been a quantity of work on the topic of cloud
storage service, which our work is mainly related to in the
following three aspects.

Cloud Measurement Studies. A dozen of research papers
measure and benchmark performance of both public clouds
[5], [17] and personal cloud services [18], [7]. Especially,
some papers elaborately study the well-performed cloud ser-
vices like Azure [19], Dropbox [20], UbuntuOne [21] and
OpenStack Swift [22] by pinning their inside architectures. In
contrast with them, we are the first to measure the performance
of the newly-launched Amazon EFS on all common filesystem
operations. More importantly, we further observe that EFS can
work as a relay to accelerate the large-file downloads from S3.

Multiple Cloud Storage. Some previous work has applied
multiple public or personal cloud services for client-central
redundant data backup (e.g., DepSky [23], MetaSync [24],
CYRUS [25]), as well as enabled efficient cross-cloud file
collaboration based on cloud web APIs (e.g., CoCloud [26]).
Besides, some other studies leverage different clouds to reduce
transfer latency [6] or provide cost-effective data placement



[27]. Unlike those studies binding multiple object storage
services for redundant chunk-based storage, HyCloud provides
a cost-efficient filesystem hosting service on top of two distinct
types of cloud storage services by carefully tweaking the
usages of them.

Optimization in Data Transfer. There have been a number
of relevant cloud storage techniques these years, like chunking
[8], [9], delta encoding and deduplication [14], [28] as well as
bundling [29], [30]. However, the APIs provided by Amazon
S3 support none of the above techniques. Fortunately, EFS and
HyCloud controller can be deployed near enough to S3 storage
servers to overcome their inefficacy, and thus file transfer
operations can be very efficient in virtue of our advanced file
transfer scheme.

VI. CONCLUSION

Motivated by the fact that object storage services like
Amazon S3 support simple, flat operations with a low price
and filesystem storage services like Amazon EFS support
complex, efficient operations with a much higher price, this
paper has presented a cost-efficient filesystem hosting service
through carefully tweaking the usages of Amazon S3 and EFS.

To achieve the above goal, we first reveal two key ob-
servations to address the large-file download bottleneck: 1)
data transformation between S3 and EFS is cheap and 2)
large-size file downloads can be coverted into small-size
file synchronizations. Guided by the observations, we design
enabling mechanisms of relay-based downloading, adaptively-
adjusted delta encoding, and filesystem operation control.
Finally we put the above proposed techniques together to
develop an open-source HyCloud prototype, which can offer
cost-efficient filesystem hosting in a scalable way. Our real-
world evaluations demonstrate that the unit storage price of
HyCloud is close to that of Amazon S3, and the filesystem
operations are executed as quickly as in EFS in most times
(sometimes even more quickly than in EFS).
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López, M. Sánchez-Artigas, and M. Vukolic, “Dissecting UbuntuOne:
Autopsy of a Global-scale Personal Cloud Back-end,” in Proc. of ACM
Internet Measurement Conference (IMC), 2015, pp. 155–168.

[22] M. Ruan, T. Titcheu, E. Zhai, Z. Li, Y. Liu, J. E, Y. Cui, and H. Xu, “On
the Synchronization Bottleneck of OpenStack Swift-Like Cloud Storage
Systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 9, pp. 2059–2074, 2018.

[23] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
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